

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/].

[Unreleased]

Added

Changed

Removed

[2.3.1] 2023-07-04

Yarn Projects

	Added support for JSON-based Yarn Project files.

	Yarn Project files contain information that the Yarn Spinner compiler can use to compile multiple Yarn scripts at the same time. Yarn Projects are designed to be used by game engines to identify how Yarn content should be imported into the game.

	Yarn Project files have the following syntax:

{
 "projectFileVersion": 2,
 "sourceFiles": ["**/*.yarn"],
 "excludeFiles": ["DontInclude.yarn"],
 "baseLanguage": "en",
 "localisation": {
 "en": {
 "assets": "./voiceover/en/"
 },
 "de": {
 "strings": "./de.csv",
 "assets": "../voiceover/de/"
 }
 },
 "definitions": "Functions.ysls.json",
 "compilerOptions": {}
}

	projectFileVersion is used to identify which version of the project file format is being used, and is currently required to be the number 2.

	sourceFiles is an array of search paths used to find the Yarn files that should be compiled as part of this project. Glob patterns [https://en.wikipedia.org/wiki/Glob_(programming)], including globstar, are supported.

	excludeFiles (optional) is an array of search paths used to find Yarn files that should not be compiled. The same kinds of patterns as sourceFiles are supported.

	baseLanguage is a IETF BCP 47 language tag [https://en.wikipedia.org/wiki/IETF_language_tag] indicating the language that the source scripts are written in (for example, en for English.)

	localisation (optional) is a dictionary containing zero or more objects that describe where locale-specific resources can be found, where the key is a language tag and the value is an object of the following layout:

	strings: The path to a file containing the localised line text for the project. (This is typically, but not required to be, a CSV file.)

	assets: The path to a directory containing the localised assets (for example, voiceover audio) for the project.

	definitions (optional) is the path to a JSON file containing command and function definitions used by the project.

	compilerOptions (optional) is an object containing additional settings used by the Yarn Spinner compiler.

Changed

	Fixed a bug in the language server that caused crashes when code-completion was requested at a position more than 50% of the way through a document.

	The following event handlers on the Dialogue class, which were previously required to be set, are now optional and may be set to null:

	LineHandler

	CommandHandler

	NodeStartHandler

	NodeCompleteHandler

	DialogueCompleteHandler

	Note that OptionsHandler remains not optional, and is required to be set.

	Dialogue now calls DialogueCompleteHandler when the Stop() method is called.

	VM now nullifies it’s state when stopped.

[2.3.0] 2023-03-06

Added

	Yarn Programs now store all headers for their nodes.

	Prior to this change, only the tags header was stored.

Changed

	The Yarn Spinner compiler’s indentation tracking has been rewritten to be more consistent in how it works.

	🚨 Breaking Change: if statements must now all be at the same level of indentation as their corresponding else, elseif, and endif statements.

	This was already strongly encouraged for readability, but is now a requirement.

	If an if statement is at a different indentation level to its corresponding statements, a compiler error will now be generated.

	The lines and other content inside an if statement can be indented as much as you like, as long as it’s not less indented than the initial if statement.

For example, the following code will work:

// With indentation
<<if $something>>
 A line!
<<else>>
 A different line!
<<endif>>

// Without indentation
<<if $something>>
A line!
<<else>>
A different line!
<<endif>>

The following code will not work:

// With indentation
<<if $something>>
 A line!
 <<else>>
A different line!
<<endif>>

	🚨 Breaking Change: Empty lines between options now split up different option groups.

	Previously, the following code would appear as a single option group (with the options ‘A’, ‘B’, ‘C’, ‘D’):

-> A
-> B

-> C
-> D

In Yarn Spinner 2.3 and above, this will appear as two option groups: one containing the options ‘A’, ‘B’, and another containing ‘C’, ‘D’.

This change was made in response to user reports that the previous behaviour didn’t behave the way they expected.

	Node title verification now occurs at declaration time instead of code generation. This means invalid titles will be caught and presented as a problem earlier on, to aid in debugging issues.

	Code completion in the Language Server has been completely rewritten. It is now much less flexible, but way more performant. For most situations, the changes will not be noticeable.

	Fixed a crash in the Language Server when encountering declaration statements without a variable.

[2.2.5] 2023-01-27

Changed

	Number pluralisation rules have been updated. The rules have now use CLDR version 42.0 (previously, 36.1)

	Merged LanguageServer projects into the core YarnSpinner repository.

	NodeInfo.PreviewText no longer removes comments from the preview.

	Migrated tests from xUnit’s Assert tests to Fluent Assertions [https://fluentassertions.com].

	Fixed an issue where pluralisation markup (i.e. the plural and ordinal tags) would not work correctly with country-specific locales (for example “en-AU”).

[2.2.4] 2022-10-31

Changed

	The compiler will now produce more useful error messages when two or more nodes in a compilation share the same name.

[2.2.3] 2022-08-28

Added

	Added a new method, Utility.DetermineNodeConnections, that analyses Yarn files and returns a directed graph of node connections.

	This feature is used in the Language Server to produce reports like voice-over scripts.

	Language Server: New command “yarnspinner.graph” that exports a string which is a graph representation in either mermaid or dot format depending on config.

[2.2.2] 2022-07-22

Changed

	Handling of escape characters is now more consistent in how it approaches the situation of when the first character is the escape character \.

	Tagging lines that contain multiwidth characters should no longer create weird invalid split characters in the dialogue.

[2.2.1] 2022-07-08

Added

	Added a means to detect and return runs of lines through basic block analysis to the Utils. This is called via the Yarn.Compiler.Utility.ExtractStringBlocks function.

Changed

	Markup attributes may now begin with a digit, letter or underscore. Previously, they were required to begin with a letter or an underscore. This allows the select marker to work with numbers: [select value=1 1=one 2=two 3=three /]

[2.2.0] 2022-04-08

Added

	Added DeclarationBuilder and FunctionTypeBuilder classes. These classes allow external libraries to construct new Declaration and FunctionType objects, without having to have access to the internal setters.

	CompilationResult.DebugInfo now provides per-instruction positional debug information.

	This allows users of the Compiler class to access positional information for each instruction, which is an important first step for source-level debugging.

	Made Diagnostic and Declaration serializable, for easier communication with language servers and other utilities.

	The compiler now does a last-line-before-options tagging pass.

	This will add a #lastline tag onto any dialogue line that immediately precedes a block of options.

	This is intended to used by other parts of the game to modify dialogue view behaviours.

	Language Server: Diagnostics and type information now come from the Yarn Spinner compiler, rather than an independent parsing pass.

	Language Server: Started adding unit tests.

Changed

	Declaration and Diagnostic now provide position information via a Range object, which specifies the start and end position of the relevant parts of the document.

	Fixed an issue where attempting to access the value of a variable with insufficient context to figure out its type would crash the compiler. (This could happen when you used a variable in a line, like Variable: {$myVar} with no other uses of $myVar.)

	Fixed an issue where an option condition with no expression (for example: -> Option one <<if>>) would crash the compiler.

	The compiler will no longer attempt to generate code if the Yarn script contains errors. (Previously, it was generating code, and then discarding it, but this allows for potential errors and crashes if code-generation is attempted on an invalid parse tree.)

	Typechecker now does partial backwards type inference, allowing for functions and variables to inform the type of the other regardless of them being the l- or r-value in an expression.

Removed

[2.1.0] 2022-02-17

Added

	The <<jump>> statement can now take an expression.

<<set $myDestination = "Home">>
<<jump {$myDestination}>>

	Previously, the jump statement required the name of a node. With this change, it can now also take an expression that resolves to the name of a node.

	Jump expressions may be a constant string, a variable, a function call, or any other type of expression.

	These expressions must be wrapped in curly braces ({ }), and must produce a string.

	Automatic visitation tracking.

You can use the visit and visited_count functions which take in the title of a node and return true of false in the first one, and the number of times visited in the second.
This can be controlled and overriden by the use a header tag tracking.
Setting tracking: always forces visitation tracking to be enabled even when there are no calls to either function for that node.
Setting tracking: never forces no visit tracking regardless of function calls to that node.

Changed

Removed

[2.0.2] 2022-01-08

Added

Changed

	Fixed an error when a constant float value inside a marker was parsed and the user’s current locale doesn’t use a period (.) as the decimal separator.

Removed

[2.0.1] 2021-12-23

Added

	The v1 to v2 language upgrader now renames node names that have a period (.) in their names to use underscores (_) instead. Jumps and options are also updated to use these new names.

Changed

	Fixed a crash in the compiler when producing an error message about an undeclared function.

	Fixed an error when a constant float value (such as in a <<declare>> statement) was parsed and the user’s current locale doesn’t use a period (.) as the decimal separator.

[2.0.0] 2021-12-20

Added

Changed

	Fixed an issue where line tags could be added at an incorrect place in a line, if that line contained a condition.

Removed

[2.0.0-rc1] 2021-12-13

v2.0.0-rc1 contains no user-facing features or bug fixes; it exists to be in sync with the corresponding v2.0.0-rc1 tag for Yarn Spinner for Unity.

[2.0.0-beta6] 2021-10-23

Added

	The Compiler will no longer throw a ParseException, TypeException or CompilerException when an error is encountered during compilation. Instead, CompilationResult.Diagnostics contains a collection of Diagnostic objects, which represent errors, warnings, or other diagnostic information related to the compiled program.

	This change was implemented so that if multiple problems can be detected in a program, they can all be reported at once, rather than the compiler stopping at the first one.

	This also allows the compiler to issue non-fatal diagnostic messages, like warnings, that do not prevent the script from being compiled, but might indicate a problem with the code.

	Exceptions will continue to be thrown if the compiler encounters an internal error (in other words, if Yarn Spinner itself has a bug.)

	If an error is encountered during compilation, CompilationResult.Program will be null.

	This change means that compilation failures will not cause Compiler.Compile() to throw an exception; code that was previously using a try...catch to detect problems will need to be rewritten to check the CompilationResult.Diagnostics property to find the actual problem.

Changed

	Made the lexer not use semantic predicates when lexing the TEXT rule, which reduces the amount of C# code present in the grammar file.

	Markup can now be escaped, using the \ character:

\[b\]hello\[/b\]
// will appear to the user as "[b]hello[/b]", and will not
// be treated as markup

	Dialogue.SetSelectedOption can now be called within the options handler itself.

	If you do this, the Dialogue will continue executing after the options handler returns, and you do not need to call Continue.

	The compiler now generates better error messages for syntax errors. For example, given the following code (note the lack of an <<endif>> at the end):

<<if $has_key>>
 Guard: You found the key! Let me unlock the door.

The compiler will produce the following error message:

Expected an <<endif>> to match the <<if>> statement on line 1

	The compiler’s new error messages now also report additional information about the context of a syntax error. For example, given the following code:

<<if hasCompletedObjective("find_key" >>
 // error! we forgot to add an ')'!
<<endif>>

The compiler will produce the following error message:

Unexpected ">>" while reading a function call

	VirtualMachine.executionState has been renamed to VirtualMachine.CurrentExecutionState.

	It is now a compiler error if the same line ID is used on more than one line.

	Dialogue.VariableStorage is now public.

Removed

	The ParseException, TypeException and CompilerException classes have been removed.

[2.0.0-beta5] 2021-08-17

Added

Variable declarations are now optional

	If a variable is not declared (i.e. it doesn’t have a <<declare>> statement), the compiler will now attempt to infer its declaration.

	When a variable doesn’t have a declaration, the compiler will try to figure out the type based on how the variable is being used. It will always try to figure out the single type that the variable must be; if it’s ambiguous, or no information is available at all, it will report an error, and you will have to add a declaration.

Variable declaration descriptions now use comments

	Declarations now have their descriptions set using a triple-slash (///) comment:

/// The number of coins the player has
<<declare $coins = 0>>

	These documentation comments can be before a declaration, or on the same line as a declaration:

<<declare $player_likes_dogs = true>> /// Whether the player likes dogs or not

	Multiple-line documentation comments are also supported:

/// Whether these are the droids that the
/// guards are looking for.
<<declare $are_the_droids_we're_looking_for = false>>

A new type system has been added.

	The type-checking system in Yarn Spinner now supports types with supertypes and methods. This change has no significant impact on users writing Yarn scripts, but it enables the development of more advanced language features.

	The main impact on users of this library (such as, for example, Yarn Spinner for Unity) is that the Yarn.Type enumeration has been removed, and is now replaced with the Yarn.IType interface and the BuiltinTypes class.

	The type checker no longer hard-codes which operations can be run on which types; this decision is now determined by the types themselves.

Changed

	Variable declaration upgrader now generates .yarnproject files, not .yarnprogram files.

	Line tagger now adds line tags before any // comment in the line.

	Dialogue: LogErrorMessage and LogDebugMessage now perform null-checks before being invoked.

	Utility.GenerateYarnFileWithDeclarations now generates files that use triple-slash (///) comments.

	Fixed a bug where expressions inside an if statement or elseif statement would not be type-checked.

	The keywords enum, endenum and case are now reserved.

	The type-conversion functions, string, number and bool, are no longer built-in special-case functions; they are now regular built-in functions that take a value of Any type.

Removed

	In previous betas, variable descriptions were done by adding a string. This has been removed:

// This will no longer work:
<<declare $coins = 0 "The number of coins the player has">>

[2.0.0-beta4]

Added

	Characters can now be escaped in lines and options.

	The \ character can be used to write characters that the parser would otherwise use.

	The following characters can be escaped: { } < > # / \

	The / and < characters don’t usually need to be escaped if they’re appearing on their own (they’re only meaningful when they appear in pairs), but this allows you to escape things like commands and comments.

	Identifiers now support a wider range of characters, including most multilingual letters and numbers, as well as symbols and emoji.

Changed

	Made line conditions control the IsAvailable flag on options that are sent to the game.

	This change was made in order to allow games to conditionally present, but disallow, options that the player can’t choose. For example, consider the following script:

TD-110: Let me see your identification.
-> Of course... um totally not General Kenobi and the son of Darth Vader.
 Luke: Wait, what?!
 TD-110: Promotion Time!
-> You don't need to see his identification. <<if $learnt_mind_trick is true>>
 TD-110: We don't need to see his identification.

	If the variable $learnt_mind_trick is false, a game may want to show the option but not allow the player to select it (i.e., show that this option could have been chosen if they’d learned how to do a mind trick.)

	In previous versions of Yarn Spinner, if a line condition failed, the entire option was not delivered to the game. With this change, all options are delivered, and the OptionSet.Option.IsAvailable variable contains false if the condition was not met, and true if it was (or was not present.)

	It’s entirely up to the game to decide what to do with this information. To re-create the behaviour from previous Yarn Spinner versions, simply don’t show any options whose IsAvailable value is false.

	Fixed a crash in LineParser if a null input was provided to it.

	Fixed a crash in FormatFunctionUpgrader (which upgrades v1 Yarn scripts to v2) if an invalid format format function was encountered.

Removed

[2.0.0-beta2] 2021-01-14

Added

	The [[Destination]] and [[Option|Destination]] syntax has been removed from the language.

	This syntax was inherited from the original Yarn language, which itself inherited it from Twine.

	We removed it for four reasons:

	it conflated jumps and options, which are very different operations, with too-similar syntax;

	the Option-destination syntax for declaring options involved the management of non-obvious state (that is, if an option statement was inside an if branch that was never executed, it was not presented, and the runtime needed to keep track of that);

	it was not obvious that options accumulated and were only presented at the end of the node;

	finally, shortcut options provide a cleaner way to present the same behaviour.

	We have added a <<jump Destination>> command, which replaces the [[Destination]] jump syntax.

	No change to the bytecode is made here; these changes only affect the compiler.

	Instead of using [[Option|Destination]] syntax, use shortcut options instead. For example:

// Before
Kim: You want a bagel?
[[Yes, please!|GiveBagel]]
[[No, thanks!|DontWantBagel]]

// After
Kim: You want a bagel?
-> Yes, please!
 <<jump GiveBagel>>
-> No, thanks!
 <<jump DontWantBagel>>

	An automatic upgrader has been added that attempts to determine the types of variables in Yarn Spinner 1.0, and generates <<declare>> statements for variables.

	This upgrader infers the type of a variable based on the values that are assigned to it, and the values of expressions that it participates in.

	If the upgrader cannot determine the type of a variable, it generates a declaration of the form <<declare $variable_name as undefined>>. The word undefined is not a valid type in Yarn Spinner, which means that these declarations will cause an error in compilation (which is a signal to the developer that the script needs to be manually updated.)

	For example: given the following script:

<<set $const_string = "foo">>
<<set $const_number = 2>>
<<set $const_bool = true>>

	The upgrader will generate the following variable declarations:

 <<declare $const_string = "" as string>>
 <<declare $const_number = 0 as number>>
 <<declare $const_bool = false as bool>>

The upgrader is able to make use of type even when it appears later in the program, and is
able to make inferences about type using indirect information.

// These variables are participating in expressions that include
// variables we've derived the type for earlier in this program, so they
// will be bound to that type
{$derived_expr_const_string + $const_string}
{$derived_expr_const_number + $const_number}
{$derived_expr_const_bool && $const_bool}

// These variables are participating in expressions that include
// variables that we define a type for later in this program. They will
// also be bound to that type.
{$derived_expr_const_string_late + $const_string_late}
{$derived_expr_const_number_late + $const_number_late}
{$derived_expr_const_bool_late && $const_bool_late}

<<set $const_string_late = "yes">>
<<set $const_number_late = 1>>
<<set $const_bool_late = true>>

	The upgrader will also make in-line changes to any if or elseif statements where the expression is determined to use a number rather than a bool will be rewritten so that the expression evaluates to a bool:

// Define some variables whose type is known before the expressions are
// hit
<<set $some_num_var = 1>>
<<set $some_other_num_var = 1>>

// This will be converted to a bool expression
<<if $some_num_var>>
<<elseif $some_other_num_var>>
<<endif>>

Will be rewritten to:

<<if $some_num_var != 0>>
<<elseif $some_other_num_var != 0>>
<<endif>>

Changed

	The internal structure of the LanguageUpgrader system has been updated to make it easier to add future upgrade passes.

Removed

[2.0.0-beta1] 2020-10-20

Added

	Version 2 of the Yarn language requires variables to be declared in order to use them. It’s now an error to set or get a value from a variable that isn’t declared.

	Variables must always have a defined type, and aren’t allowed to change type. This means, for example, that you can’t store a string inside a variable that was declared as a number.

	Variables also have a default value. As a result, variables are never allowed to be null.

	Variable declarations can be in any part of a Yarn script. As long as they’re somewhere in the file, they’ll be used.

	Variable declarations don’t have to be in the same file as where they’re used. If a script has a variable declaration, other scripts compiled with it can use the variable.

	To declare a variable in a script, use the following syntax:

<<declare $variable_name = "hello">> // declares a string
<<declare $variable_name = 123>> // declares a number
<<declare $variable_name = true>> // declares a boolean

	Added substitution support to Dialogue (previously, the game client had to do it)

	Added support for markup.

	Added an EditorConfig file to assist future contributions in following the .NET coding style (@Schroedingers-Cat)

	Added Dialogue.prepareForLinesHandler, a delegate that is called when the Dialogue anticipates running certain lines; games can use this to pre-load content or take other actions to prepare to run lines.

	Yarn Spinner will check the types of the delegate you provide. At present, parameters must be either ints, floats, doubles, bools, strings, or Yarn.Values.

	Added a new command, <<jump>>, which immediately jumps to a new node. It takes one parameter: the name of the node to jump to.

Changed

	Library.RegisterFunction no longer works with the Function and ReturningFunction classes, which have been removed. Instead, you provide a Func directly, which can take multiple individual parameters, rather than a single Value[] parameter.

	The LineHandler, CommandHandler, and NodeCompleteHandler callbacks, used by the Dialogue class, no longer return a value that indicates whether the Dialogue should pause execution. Instead, the Dialogue will now always pause execution, which can be resumed by calling Dialogue.Continue(). (This method may be called from inside the line handler or command handler, or at any point after these handlers return.)

	The Compiler class no longer compiles Yarn scripts using the CompileFile and CompileString methods. Instead, the Compile method accepts a CompilationJob struct that describes the work to do, and returns a CompilationResult struct containing the result. This method allows for the compilation of multiple files into a single program, as well as supplying variable and function declarations.

	The Compiler class also supports doing only a partial compilation, returning only variable declarations or string table entries.

	Yarn scripts are now all compiled into a single YarnProgram. This improves compilation performance, ensures that scripts don’t have multiple nodes with the same name, and ensures that scripts are able to make use of variables declared in other scripts.

	Shortcut options have been renamed to “options”.

Removed

	[[Option]] syntax has been removed.

	In previous versions of the Yarn language, there were two ways of presenting options to the player: “regular” options ([[Displayed text|DestinationName]]), and shortcut options (-> Displayed Text), with shortcut options being displayed immediately, and regular options accumulating and being presented at the end of the node.

	In Yarn Spinner 2.0, the “regular” option syntax has been removed; when you want to show options to the player, use the “shortcut option” syntax.

	The previous, related syntax for jumping to another node, ([[DestinationNode]]), has also been removed, and has been replaced with the <<jump>> command.

	Functions registered with the Library class can no longer accept an unlimited number of parametes.

[1.2.0] 2020-05-04

Added

	Added Nuget package definitions for YarnSpinner [http://nuget.org/packages/YarnSpinner/] and YarnSpinner.Compiler [http://nuget.org/packages/YarnSpinner.Compiler/].

Changed

	Parse errors no longer show debugging information in non-debug builds.

Removed

[1.2.0-beta1] 2020-05-28

Added

	Yarn scripts now appear with Yarn Spinner icon. (@Schroedingers-Cat)

	Documentation is updated to reflect the current version number (also to mention 2018.4 LTS as supported)

	Added a button in the Inspector for .yarn files in Yarn Spinner for Unity, which updates localised .csv files when the .yarn file changes. (@stalhandske, #227)

	Added handlers for when nodes begin executing (in addition to the existing handlers for when nodes complete.) (@arendhil, #222)

	OptionSet.Option now includes the name of the node that an option will jump to if selected.

	Added unit tests for Yarn Spinner for Unity (@Schroedingers-Cat)

	Yarn Spinner for Unity: Added a menu item for creating new Yarn scripts (Assets -> Create -> Yarn Script)

Changed

	Fixed a crash in the compiler when parsing single-character commands (e.g. <<p>>) (#231)

Removed

[1.1.0] - 2020-04-01

Final release of v1.1.0.

[1.1.0-beta3]

Added

Changed

	Fixed a bug that caused <<else>> to be incorrectly parsed as a command, not an else statement, which meant that flow control didn’t work correctly.

[1.0.0-beta2]

Added

	Inline Expressions: Embed variables, values and expressions right into your dialogue.

	You can use inline expressions in lines, options, shortcut options, and commands.

	Inline expressions look like this: Mae: Wow! I have {$num_pies} pies!.

	When the compiler processes a line that includes an inline expression, the line that’s stored in the string table will have each of the expressions replaced with a placeholder. For example, the line above will be stored as Mae: Wow! I have {0} pies!. If you’re translating a line to other languages, the placeholders can be moved and re-ordered as you need them.

	Any expression can be used - numbers, strings, variables, function calls, or more complex expressions.

	The Line struct now includes an array of substitutions, which Dialogue UI objects will insert into the localised line at the appropriate place.

	Documentation for inline expressions is available on the Yarn Spinner site [https://yarnspinner.dev/docs/syntax/#inline-expressions].

	Format Functions: Easier localisation when dealing with inline expressions.

	Format functions are in-line expressions in your scripts that dynamically select text based on a variable. These functions can be localised, which means you can change them based on the needs of the language you’re translating the game into.

	Format functions will appear as-is in the .csv string tables that Yarn Spinner for Unity generates, which means that they can be edited by translators.

	Please note that format functions are intended to be a tool for ensuring correct grammar across multiple languages. They are more complex than a simple inline expression, and may complicate your dialogue. They’re not intended to replace if-endif structures for your dialogue’s logic.

	There are three format functions available: select, plural, and ordinal.

	The select function takes a string variable and uses its value to select a piece of text to use. For example:

	Character: Wow, [select {$gender} male="he" female="she" other="they"] seem happy!

	The plural function uses a number variable and determines its plural category. For example:

	Character: Good thing I have {$money_count} gold [plural {$money_count} one="piece" other="pieces"]!

	The ordinal function uses a number variable and determines its ordinal category. For example:

	Character: The race is over! I came [ordinal {$race_position} one="%st" two="%nd" few="%rd" other="%th"]!

	This example also shows how you can embed the variable that the function is using in the result - the % character will be replaced the variable’s value (in this example, $race_position, creating text like “I came 3rd!”)

	Different languages have different plural rules. Yarn Spinner uses the plural rules defined by the Unicode CLDR [https://www.unicode.org/cldr/charts/latest/supplemental/language_plural_rules.html]; note that not all languages make use of all plural categories.

	Yarn Spinner for Unity will use the Text Language setting to determine which plural rules to apply.

	Documentation for format functions is available on the Yarn Spinner site [https://yarnspinner.dev/docs/syntax/#format-functions].

	Faster Compiling: Yarn Spinner for Unity now uses .asmdef files.

	Yarn Spinner’s Unity code now compiles to a separate assembly. (@Schroedingers-Cat)

	IMPORTANT: if you’re using asmdefs in your own code, any assembly you write that needs to refer to Yarn Spinner will need to add a reference to the YarnSpinner.Unity assembly.

	Patreon Supporter Info: Patreon supporter [https://www.patreon.com/bePatron?u=11132340] information is now displayed in the Yarn Spinner window in Yarn Spinner for Unity.

	To view it, open the Window menu, and choose Yarn Spinner.

	While you’re viewing it, why not consider becoming a supporter yourself? 😃

Changed

	Yarn Spinner’s Unity integration now supports Unity 2018.4 LTS and later. (Previously, the minimum version was unspecified, but was actually 2019.2.)

	Fixed a bug that caused the unary minus operator (e.g. -$foo) to cause crashes when it’s run.

	Unit tests now use test plans, which makes the test cases much more rigorous.

	Methods for working with functions in the DialogueRunner class for Yarn Spinner for Unity (thanks to @unknowndevice):

	Renamed: AddFunction (renamed from RegisterFunction)

	Added: RemoveFunction, which removes a function.

Removed

[1.0.3] - 2020-02-01

Added

	The compiler will now reject node titles that contain an invalid character. Invalid characters for node titles are: [,], {, }, |, :, #, $, or spaces.

	Added some parser tests for working with node headers.

Changed

	Fixed a bug where the Dialogue UI component in Unity would not actually send any commands to the ‘On Command’ event.

	Command handlers will now look for command handlers added via AddCommandHandler first (which is faster), followed by commands registered using the YarnCommand attribute (which is slower).

	When writing an option (for example, [[Hello!| Greeting]]), any whitespace around the node name (Greeting) will be discarded. This fixes a bug where Yarn Spinner would try to go to a node named “ Greeting “, but spaces in node names aren’t allowed. (#192)

	Fixed a bug where a null reference exception would be thrown the first time a new Yarn file’s Inspector is drawn. (@Schroedingers-Cat)

	Made string table CSVs always be read and written in the Invariant culture. Previously, locale differences would lead to parsing failures. (#197)

	Disabled ‘this field is never assigned to’ warnings for certain files in the Unity version (they’re assigned in the Editor, which the compiler doesn’t know about.)

Removed

[1.0.2] - 2020-01-23

Bug fixes and small quality-of-life improvements.

Added

	Added a method for manually loading a string table as a dictionary to DialogueRunner

	DialogueUI now allows skipping to the end of a line’s delivery, by calling MarkLineComplete before the line has finished appearing.

	Option buttons can now use TextMeshPro Text components, in addition to Unity UI Text components. (TextMeshPro for line display was already supported.)

	DialogueUI now allows other scripts to select an option. When the SelectOption method, which takes an integer representing the index of the option you want to select, is called, the Dialogue UI will act as though the corresponding button was clicked.

Changed

	Made the debug display in InMemoryVariableStorage slightly tidier

	Made changing the InMemoryVariableStorage update its debug display’s layout components

	Made InMemoryVariableStorage’s contents enumerable in a foreach loop

	Fixed a bug where the Dialog would pause when a blocking command handler immediately calls its onComplete and returns

	Fixed a bug where parsing the <<wait>> command’s parameter was locale-specific (i.e. certain European locales parse decimal numbers as “1,0”), which meant that behaviour would vary based on the end-user’s configuration.

	Fix a bug where manually-added functions would never run if the first parameter was the name of an object in the scene.

	Improve the UI for managing localised lines (thanks to @Schroedingers-Cat)

[1.0.1] - 2020-01-08

A bugfix release.

Changed

	Fixed an issue where the first instruction after an if statement, option, shortcut option or jump to another node could be skipped.

[1.0.0] - 2020-01-07

This is the first major release of Yarn Spinner. We’re thrilled to bring this to you, and want to thank everyone who’s helped us bring Yarn Spinner to this point.

Added

	Binary Program Format: Yarn programs are now compiled into a binary format, which uses Protocol Buffers. Compiled files can be written to disk and loaded at runtime, which means that you don’t need to include the source code of your game’s dialog when distributing it to players. The time needed to load a dialogue file is also significantly reduced, because compilation happens on your machine, not on the player’s.

	Canvas Prefab: The Dialogue prefab, which you can find in the YarnSpinner/Prefabs folder, is a drag-and-drop object that you can add to your scene. It’s a great way to get started using Yarn Spinner in your own game, and is designed to be customised to fit your needs.

	Dialogue UI Events: The DialogueUI class now fires Unity Events when important events occur, like dialogue starting, a line appearing, a line’s delivery completing, and more. You can use this to control the behaviour of your dialogue UI without writing any code.

	Automatic Compilation in Unity: The Unity integration for Yarn Spinner will automatically detect your Yarn files and compile them.

	Instant Localisation Tags: Select the Yarn file in Unity, and click Add Line Tags. Any lines or options that don’t have a localisation tag will have one added. (Note that this step changes your files on disk, and can’t be undone.)

	Simpler CSV Export: When you want to export a CSV file containing your localised lines, select the Yarn file in Unity, choose the language you want to localise into from the drop-down menu, and click Create New Localisation. A .csv file will be created next to your Yarn file, ready to be sent to your translators. (Note that you can only create a CSV when every line and option in the file has a line tag. Yarn Spinner in Unity can create them for you if you click Add Line Tags.)

	Visual Studio Code Extension: We’ve heard from people who want to write their Yarn code in a text editor, and we’ve created an extension for Visual Studio Code [https://code.visualstudio.com] that adds syntax highlighting support (with more features coming in the future!) You can install the extension from the Visual Studio Code Marketplace [https://marketplace.visualstudio.com/items?itemName=SecretLab.yarn-spinner].

	New Website: A brand-new website for Yarn Spinner is now available at yarnspinner.dev [https://yarnspinner.dev]. This will be the home of all future documentation.

Changed

	The standard file extension for Yarn codes has changed from .yarn.txt to .yarn. The Yarn Editor has been updated to save as .yarn by default. (It still supports opening your existing .yarn.txt files.)

	The Dialogue class, which executes your Yarn program, previously sent the text of the lines and options found in the source code. This has now changed; the Dialogue will now instead send just the line code, and the DialogueRunner matches the code to a localised string.

	If a line doesn’t have a line code, Yarn Spinner will create a unique one based on the name of the file, the name of the node, and where the line appears.

	The Compiler class’s CompileFile and CompileString methods, which compile .yarn files into Yarn programs, have had their method signatures change. They now return a Yarn.Compiler.Status enum, and produce two results: the compiled Yarn program, and the extracted string table as a dictionary.

	The compiler has been moved into its own assembly, Yarn.Compiler.dll. If your code doesn’t use any of the classes in the Yarn.Compiler namespace, it won’t be included. This reduces the amount of code you need to include in your game.

	The Yarn.Unity.Example classes, like ExampleDialogUI, have been renamed to remove “Example”. Everyone was using these as the basis for their own classes anyway, and we felt it was better to acknowledge that they weren’t really showing one way to do it, but rather showing the preferred way. This name change acknowledges this fact.

	DialogueRunner now no longer relies on coroutines for operations that take longer than a single frame. Instead, DialogueUI’s methods that run in response to lines, options and commands return a Dialogue.HandlerExecutionType enum to indicate to Yarn Spinner whether it should pause execution or continue running.

	DialogueRunner now separates out the act of loading compiled programs and the act of loading a string table into two distinct methods. This gives you control over which localised lines of text should be used when the Dialogue class sends line codes to your game.

Removed

	We’ve removed the “simple dialog example” from the repo, and made the “complex dialog example” - the one set in space, featuring Sally and the Ship - the sole example.

	We’ve removed the documentation from the repo; the new home for Yarn Spinner documentation is the official website, yarnspinner.dev [https://yarnspinner.dev].

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at yarnspinner@secretlab.com.au. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Contributing to Yarn Spinner

Hi there! We’re thrilled that you’d like to contribute to this project. Your help is essential for keeping it great.

How to send in your contributions

There are many ways you can send your contributions to Yarn Spinner. You can either report a bug, or you can make the changes yourself and submit a pull request!

Reporting bugs and opening issues

Please report bugs [https://github.com/YarnSpinnerTool/YarnSpinner/issues] and open issues generously. Don’t be afraid that your idea is silly, or you’re reporting a duplicate. We’re happy to hear from you. Seriously.

Please Note: Yarn Spinner is written by volunteers. If you encounter a problem while using it, we’ll do our best to help you, but neither the authors, or Secret Lab Pty. Ltd. can offer any support.

Submitting a pull request

	Fork [https://github.com/YarnSpinnerTool/YarnSpinner/fork] and clone the repository

	Create a new branch: git checkout -b my-branch-name

	Make your changes

	Push to your fork and submit a pull request [https://github.com/YarnSpinnerTool/YarnSpinner/compare]

	Pat your self on the back and wait for your pull request to be reviewed.

If you’re unfamiliar with how pull requests work, GitHub’s documentation on them [https://help.github.com/articles/using-pull-requests/] is very good.

Here are a few things you can do that will increase the likelihood of your pull request being accepted:

	Update the documentation as necessary, as well as making code changes.

	Keep your change as focused as possible. If there are multiple changes you would like to make that are not dependent upon each other, consider submitting them as separate pull requests.

	Write a good commit message [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Branches

All of Yarn Spinner’s in-progress work happens on the main branch. When we make a release, we create a new release directly from main. This means that main is always in a state of flux.

Code and other contributions

Contributions to Yarn Spinner (via pull request or otherwise) must be licensed under the MIT license.

Contributors

The following people have contributed to the development of Yarn Spinner. If you submit a pull request, please add your name to the list below.

	2015-ongoing: Secret Lab Team - Dr Jon Manning and Dr Paris Buttfield-Addison lab@secretlab.com.au

	2017: Rev Peter Lawler relwalretep@gmail.com

	2017: Dr Tim ‘McJones’ Nugent tim@lonely.coffee

	2018: Damon ‘demanrisu’ Reece de@coy.ninja

	2019: Tamme Schichler tamme@schichler.dev

	2020: @Schroedingers-Cat

	2021: Peter Appleby

 The MIT License (MIT)

Copyright (c) 2015-2017 Secret Lab Pty. Ltd. and Yarn Spinner contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Yarn Spinner 2.0

[image: Yarn Spinner logo]Yarn Spinner [https://yarnspinner.dev] is the friendly tool for writing dialogue in games. It’s easy for writers to use, and has powerful features for programmers.

Yarn Spinner is a dialogue system that lets you write interactive conversations in a simple, screenplay-like format, which can be loaded into your game and run.

When a conversation is running, Yarn Spinner sends your game lines of dialogue to show, options to let the player choose from, and commands to make things happen in your scene.

Yarn Spinner has been used in a number of critically acclaimed games, including Night in the Woods [http://nightinthewoods.com], A Short Hike [https://ashorthike.com], Lost in Random [https://www.ea.com/en-au/games/lost-in-random], and many more.

It’s free to download and use for free and commercial games, and is open source under the terms of the MIT License.

Getting Started

This repo contains the core source code for the Yarn Spinner compiler. If you want to use it in a game, you should get the appropriate package for your game engine.

Official Packages

These packages are written by the Yarn Spinner team, and are officially supported.

	Yarn Spinner for Unity [https://github.com/YarnSpinnerTool/YarnSpinner-Unity/releases/latest] (2019.4 LTS or later)

Learning More

Full documentation, tutorials, and additional information is available in the Yarn Spinner documentation [https://docs.yarnspinner.dev].

Getting Help

For help, support, discussion, and chill community times, come and join the Yarn Spinner Discord [https://discord.gg/yarnspinner]!

Credits

Yarn Spinner is developed by Yarn Spinner Pty. Ltd. [https://yarnspinner.dev/], an Australian company. We are a spinoff of game development studio, Secret Lab Pty. Ltd. [https://secretlab.games/]. The project is supported along with a huge community of contributors.

The logo was made by Cecile Richard [https://www.cecile-richard.com/].

Yarn Spinner’s development is made possible in part by NYU Game Center [https://gamecenter.nyu.edu/], and an Epic Mega Grant.

This project has also been assisted by the Australian Government through the Australia Council [https://www.australiacouncil.gov.au/], its arts funding and advisory body.

Help Us Make Yarn Spinner!

Yarn Spinner needs your help to be as awesome as it can be! You don’t have to be a coder to help out - we’d love to have your help in improving our documentation [https://docs.yarnspinner.dev], in spreading the word, and in finding bugs.

	Yarn Spinner’s development is powered by our wonderful Patreon supporters. Become a patron [https://patreon.com/secretlab], and help us make Yarn Spinner be amazing.

	Our issues page [https://github.com/YarnSpinnerTool/YarnSpinner/issues] contains a list of things we’d love your help in improving.

	Follow Yarn Spinner on Twitter [http://twitter.com/YarnSpinnerTool].

If you want to contribute to Yarn Spinner, go read our contributor’s guide!

 <no title>

	Please check if the pull request fulfills these requirements

	[] Tests for the changes have been added (for bug fixes / features)

	[] Docs have been added / updated (for bug fixes / features)

	[] CHANGELOG.md has been updated to describe this change

To update the documentation on yarnspinner.dev [https://yarnspinner.dev], please visit the documentation repository [https://github.com/YarnSpinnerTool/Docs].

	What kind of change does this pull request introduce?

	[] Bug Fix

	[] Feature

	[] Something else

	What is the current behavior? (You can also link to an open issue here)

	What is the new behavior (if this is a feature change)?

	Does this pull request introduce a breaking change? (What changes might users need to make in their application due to this PR?)

	Other information:

 <no title>

 This is the compiler for Yarn Spinner. If you want to use Yarn Spinner in a Unity game, please see the releases page for Yarn Spinner for Unity [https://github.com/YarnSpinnerTool/YarnSpinner-Unity/releases/]!

Yarn Spinner is made possible by your generous patronage. Please consider supporting Yarn Spinner’s development by becoming a patron [https://patreon.com/secretlab]!

 <no title>

name: Bug report
about: Create a report to help us improve!
title: ‘’
labels: bug
assignees: ‘’

What is the current behavior?

Please provide the steps to reproduce, and if possible a minimal demo of the problem:

What is the expected behavior?

Please tell us about your environment:

	Yarn Spinner Version:

	Unity Version:

Other information

 <no title>

name: Feature request
about: Suggest an idea for Yarn Spinner!
title: ‘’
labels: ‘’
assignees: ‘’

Is your feature request related to a problem? Please describe.

Describe the solution you’d like

Describe alternatives you’ve considered

Additional context

 Introduction

name: Language enhancement proposal
about: Propose a change to the Yarn language!
title: ‘Proposal: ‘
labels: proposal
assignees: ‘’

Introduction

A short description of what the feature is. Try to keep it to a single-paragraph “elevator pitch” so the reader understands what problem this proposal is addressing.

Rationale

Describe the problems that this proposal seeks to address. If the problem is that some common task is currently hard to express in Yarn Spinner, show how one can currently get a similar effect, and describe its drawbacks. If it’s completely new functionality that can’t be emulated in the current language, explain why this new functionality would help writers or programmers work with Yarn code.

Proposed solution

Describe your solution to the problem. Provide examples and describe how they work. Show how your solution is better than current workarounds: is it cleaner, safer, or more efficient?

Detailed design

Describe the design of the solution in detail. If it involves new syntax in the language, show the additions and changes to the Yarn grammar. If it’s a new API, show the full API and its documentation comments detailing what it does. The detail in this section should be sufficient for someone who is not one of the proposal authors to be able to reasonably implement the feature.

Backwards Compatibility

Describe the impact that your solution will have on code written in the most recent shipping version of the language. If your proposed changes mean that existing code would need to be changed in order to work, describe in detail what changes would be required, and describe an algorithm (pseudocode is fine) for detecting where these changes are necessary, and how an automated upgrader would either make changes or flag that a human must make changes.

Alternatives considered

Describe alternative approaches to addressing the same problem, and why you chose this approach instead.

Acknowledgments

If significant changes or improvements suggested by members of the community were incorporated into the proposal as it developed, take a moment here to thank them for their contributions. Designing the Yarn language is a collaborative process, and everyone’s input should receive recognition!

 Yarn Spinner Documentation

Yarn Spinner Documentation

Documentation for Yarn Spinner is hosted on the Yarn Spinner site, at yarnspinner.dev [https://yarnspinner.dev].

 Yarn Spinner Release Process

Yarn Spinner Release Process

This document outlines the steps taken to do a release of Yarn Spinner, Yarn Spinner for Unity, and Yarn Spinner Console, as well as the documentation and post-release messaging.

Pre-Release

During pre-release, we figure out what the most important things we need to communicate about the upcoming release are, and prepare posts and material to go out immediately after the packages are built and released.

We primarily communicate via Twitter and Discord.

	Build a list of new features and important changes

	Write up the announcement for the Discord, highlighting important changes, links to new documentation, and (if applicable) a screenshot. Aim for 100 words or less, and with a friendly, casual, excited tone.

For example, here’s v2.1’s announcement:

Hey @everyone! We’re delighted to announce that Yarn Spinner 2.1 has just been released!

Full release notes are here: https://github.com/YarnSpinnerTool/YarnSpinner-Unity/releases/tag/v2.1.0

In this release, we’ve made it a lot easier to write your own custom dialogue views, by simplifying the API a lot! Your code now needs to do a lot less. Read more about it in the documentation! https://docs.yarnspinner.dev/using-yarnspinner-with-unity/components/dialogue-view/custom-dialogue-views

Please note: If you already have existing custom Dialogue Views, you’ll need to update them to use the new API. However, it’s a lot simpler to deal with! For an example of how to use the new API, take a look at the sample code in the YarnSpinnerTool/ExampleProjects repo: https://github.com/YarnSpinnerTool/ExampleProjects/blob/main/UtilityScripts/SimpleSpeechBubbleLineView.cs

We’ve also added a long-requested feature: you can now jump to a variable or other expression!

<<set $destination = "Home">>
<<jump {$destination}>>

This release also contains a number of bug fixes, including:

	That bug where the built-in functions didn’t work (sorry, sorry)

	That bug where all lines would vanish until the next re-import if you modified a Yarn script in Play Mode

We hope you like it!

	Draft Twitter posts for release

	Example tweets:

	Yarn Spinner 2.1’s release tweet: https://twitter.com/YarnSpinnerTool/status/1494207420222296067

	Try Yarn Spinner’s release tweet: https://twitter.com/YarnSpinnerTool/status/1504305532777435144

	(Release tweets generally do better when there’s an image to post, even if that image is nothing but text on a background. Contact @desplesda or @TheMartianLife if you need graphics to post, or if you need access to the marketing assets.)

Yarn Spinner Core

	Ensure that current build has passed checks: https://github.com/YarnSpinnerTool/YarnSpinner/actions/workflows/build.yml

	Review CHANGELOG.md:

	Check for typos, grammar, etc

	Rename ## [Unreleased] section to mark the release:

	Format: ## [VERSION] YYYY-MM-DD

	Note that the version number doesn’t include the v!

	Add a new ## [Unreleased] header, ready for new entries

	Once we’re happy with the final, tag it!

	Tags must be of format vX.Y.Z - the release action is looking for this

	git tag it

	Push the repo and tags

	Release action will automatically run

	https://github.com/YarnSpinnerTool/YarnSpinner/actions/workflows/release.yml

	It’ll download it, test it, package it, and release it to NuGet.

	A new draft GitHub release will be created by this run - go to https://github.com/YarnSpinnerTool/YarnSpinner/releases, review the release notes (which were extracted from CHANGELOG.md), and once satisfied, release the draft.

Yarn Spinner for Unity

	Update the project to use the new DLLs that Yarn Spinner Core just built:

	https://github.com/YarnSpinnerTool/YarnSpinner-Unity/actions/workflows/update_dlls.yml

	Run the workflow, using the main branch

	The workflow will download Yarn Spinner, build it, update the Unity project, and open a new pull request for the change

	Merge this new pull request

	Verify that the new build passes its tests

	https://github.com/YarnSpinnerTool/YarnSpinner-Unity/actions/workflows/test.yml

	Update AssemblyInfo.cs:

	For each of the following files in the YarnSpinner-Unity repo:

	Runtime/AssemblyInfo.cs

	Editor/AssemblyInfo.cs

	Update the AssemblyVersion, AssemblyFileVersion and AssemblyInformationalVersion versions to match the new version.

	For AssemblyVersion and AssemblyFileVersion, these values must be formatted as MAJOR.MINOR.PATCH.BUILD.

	We generally use zero for the build number, and generally use the same value in AssemblyInformationalVersion.

	Review CHANGELOG.md:

	Check for typos, grammar, etc

	Rename ## [Unreleased] section to mark the release:

	Format: ## [VERSION] YYYY-MM-DD

	Note that the version number doesn’t include the v!

	Add a new ## [Unreleased] header, ready for new entries

	Update Unity package version

	https://github.com/YarnSpinnerTool/YarnSpinner-Unity/blob/main/package.json

	Package version should match the tag version, without the v.

	(This is a very important step, because if it’s missed, OpenUPM’s build will fail.)

	Commit and push the change.

	Once we’re happy with the final, tag it!

	Tags must be of format vX.Y.Z - the release action is looking for this

	git tag it

	Push the repo and tags.

	Release action will automatically run

	https://github.com/YarnSpinnerTool/YarnSpinner-Unity/actions/workflows/release.yml

	A new draft GitHub release will be created by this run - go to https://github.com/YarnSpinnerTool/YarnSpinner/releases, review the release notes (which were extracted from CHANGELOG.md), and once satisfied, release the draft.

	After a while (generally about 5-10 minutes), OpenUPM will notice the new tag, and start building it: https://openupm.com/packages/dev.yarnspinner.unity/?subPage=pipelines

	If the ‘latest’ version doesn’t change to the new version after a few minutes (generally less than 10 minutes after it first appears), or if the build is marked as failed, this generally indicates a build failure.

	This is usually caused by the package.json version not being updated. In this case, delete the tag in GitHub, fix the file, push and re-tag it (with the same tag name), and OpenUPM should notice the updated tag and try again. (You will need to delete the duplicate GitHub release that the previous attempt produced.)

Yarn Spinner Console

	Update the version of YarnSpinner and YarnSpinner.Compiler in src/YarnSpinner.Console/ysc.csproj to the new version you released earlier.

	Review CHANGELOG.md:

	Check for typos, grammar, etc

	Rename ## [Unreleased] section to mark the release:

	Format: ## [VERSION] YYYY-MM-DD

	Note that the version number doesn’t include the v!

	Add a new ## [Unreleased] header, ready for new entries

	Tag and push. The build and release action will run automatically:

	https://github.com/YarnSpinnerTool/YarnSpinner-Console/actions/workflows/build.yml

	A new release will be created in GitHub.

	Review it and release it when satisfied.

Documentation

	Branch the current documentation in gitbook, in the YSDocs repo, into a new branch.

	For example, if the current release number is 2.1, then branch it into versions/2.1:

	git checkout -b versions/2.1 gitbook

	git push origin versions/2.1

	Notify @desplesda to make this branch available as a variant in GitBook

	Merge staging into gitbook:

	git checkout gitbook

	git merge staging

	git push origin gitbook

	Wait a couple of minutes, and then check that the docs on https://docs.yarnspinner.dev are up-to-date

Post-Release

	Post the release tweets that were prepared earlier.

	Post the version announcement in Discord.

	Blow your party horn 🥳

 Yarn Spec

Yarn Spec

Language version 2 | Last updated: 30th September 2021

This document defines the Yarn Script version 2 language format, and contains guidance and rules for implementing programs to process Yarn 2 scripts.

Introduction

Yarn is a language for representing branching and linear interactive fiction in games.
Yarn was created for the game Night in the Woods and was inspired by the Twine language.
Its focus is on flexibility and writer ease; the primary goal of the language is to have clear, minimal syntax and to remain as close to just writing dialogue text as possible.
For writers there should be minimal friction in authoring in Yarn and, for programmers, there should be minimal annoyance when interfacing with it.

During development of Night in the Woods, Yarn Spinner was created as an open source framework to better integrate Yarn with the Unity Game Engine–a side project and had no affiliation to Night in the Woods at the time.
But Yarn Spinner could read and understand Yarn files, and had several advantages over the Yarn interpreter in Night in the Woods, so the decision was made to use Yarn Spinner for the game.
This made Yarn Spinner the de facto Yarn interpreter and had the side effect of giving it control over the specification of the language.
Yarn essentially became and was henceforth defined by what Yarn Spinner could understand.

As Night in the Woods was developed additional features, and work was done on Yarn Spinner for the game, the set of features and syntax exploded and became difficult to understand or reimplement.
Post-Night in the Woods, Yarn Spinner continued as an independent project.
Yarn Spinner version 0.9 was mostly a polished form of the framework as was used in Night in the Woods, but 1.0 came with improved syntax and was the first significant release that wasn’t tied to Night in the Woods.

Neither Yarn Spinner 0.9 or 1.0 however came with complete specifications of the Yarn language and had a great deal of legacy elements.
A concerted effort was made to clean up the Yarn language for Yarn Spinner 2.0 into something hopefully more understandable but also more flexible.
A component of this is the creation of this specification guide, so implementations of alternative interpreters or other Yarn- or Yarn Spinner-related tools can have a clear source of truth (that isn’t “just copy what Yarn Spinner does”).
We hope this will empower others to make their mark on the broader Yarn Spinner ecosystem, by supporting the creation of new tools or bridging frameworks to bring Yarn Spinner to a broader range of game engines and workflows.

Despite this being the first time a Yarn language specification has existed, it is version 2 of the Yarn language.
This is to avoid confusion that would arise should the Yarn language specification and the Yarn Spinner framework be versioned separately.

Coverage

This document covers the elements of a Yarn script that are required to be considered valid, as well as the rules necessary for an implementing program to conform to this specification.

An implementing program is a program that accepts Yarn files as inputs and understands them based on the rules in this document.
This document does not cover how a Yarn file is to be transformed or handled internally by an implementing program.

This document does note when behaviours are unspecified.
The implementing program may choose how to handle any unspecified behaviour, often unspecified behaviours have no good solution and should result in an error.
An example of unspecified behaviour are required tags on nodes.
Only the title tag is required, an implementation may choose to make other tags required or banned.

Assumptions

There is one large assumption in this document and about the language itself:
that it is intended to be employed as part of a larger game project.

As such, details like how lines are viewed, how selections of options are made, how generic commands get used, or how functions are handled are all assumed to be passed off onto the larger game to handle.
This is not technically necessary, but does explain what would otherwise be gaps in the language.
If your project does not have a game to offload certain tasks to, these elements will have to be handled by the implementing program itself.

Reading This Specification

monofont terms are to be taken as literals.
italics terms are terms which are reused throughout the document.
They are presented in italics the first time they are defined.

Must is a hard requirement.
Should is a recommendation, albeit a strong one.

Errors are mentioned multiple times and represent situations that are unrecoverable.
A goal of Yarn is to have all errors known and handled at creation time instead of runtime but this isn’t always possible.
Errors are intended to allow the implementing program to let the user, or other parts of the game, know that an unrecoverable situation has occurred.
This means the implementing program must abort after creating an error.
The precise handling of errors will be specific to the implementing program, but should use whatever error mechanisms exist already.
For example, Yarn Spinner throws normal C# exceptions for its errors.

Dates, spelling, and numbers are to be in Australian English.

Railroad Diagrams

At various points railroad diagrams [https://en.wikipedia.org/wiki/Syntax_diagram] are included with the rules.
These provide a visual means of understanding the rules presented here to aid in parsing Yarn.

The diagrams are to be read left to right, following the lines until you hit the end of the rule.
Each time you encounter an element in the path that element must be represented in the raw text of the Yarn file for the rule to be valid.
White elements are more complex rules, grey elements are literals either by name for convenience or if they are encapsulated inside single quotes ' they are a string literal as described above.
Lines may loop back or skip over elements, and every path through the diagram describes a valid version of the rule.

The diagrams at various stages use ranges to represent all potential values within that range.
Common uses of this include being able to capture the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, as [0-9].
For ranges enclosed in [] notation, the character on the left side of the range represents the start and the right side represent the end of the range (inclusive).
Hardcoded unicode values are also shown in the diagrams, these represent elements that are either difficult to show visually or for easier capture in ranges.
Unicode values are represented in these diagrams with a \u followed by a multiple digit hexadecimal value.
The value of these digits map directly to a unicode code point, for example \u00A8 represents the ¨ or DIAERESIS symbol.

It is important to note that railroad diagrams provide the rules for parsing Yarn, and only for parsing.
The side effect of this is certain rules are not able to be easily captured in parser rules alone.
As an example of this the railroad diagram for headers shows that there must be one or more header tags, but doesn’t capture that one of those tags must be the title.
Railroad diagrams capture the syntactic but not semantic rules.

Modifying This Specification

Once this specification is complete it is set and unchanging.
Modifications beyond clarifications won’t be allowed.
To make changes to the language specification a new version of the language will need to be created.

This is to ensure implementing programs can conform to a language version and not have to worry about it changing after the fact.

File Format

Yarn files must be a UTF-8 text file and should not have the BOM set.
File extension should be .yarn.

Project

The Yarn project is all Yarn files that are intended to be associated with one another.
While there is nothing stopping a writer from placing all nodes into one big file (or even one giant node), it is common to break them up over multiple files.
The project is all of these files collected and processed by the implementing program together.

Lines

The line is the common unit that comprises all elements in a Yarn file.
A line is a series of characters terminated by the new line symbol.
The new line symbol should be either the \n character or \r\n.
Once chosen, the new line symbol must remain the same throughout the project.

The following Yarn file contains four lines (in order); one header tag line, one header delimiter line, one body dialogue line, one body delimiter line.

title: Start

This is some text
===

Whitespace

Whitespace is any non-visible character with a width greater than 0.
Common whitespace encountered include the space and the tab.

Whitespace for the most part plays no role for the majority of Yarn, but has significant syntactic impact for options.

Comments

A comment is a line that starts with the // symbol.
All text from the start of the comment to the end of the line must be ignored.
A comment starting in the middle of another line ends that line at the point the // symbol is encountered.
That line is assumed to have finished at that point as if the comment was not there.
Comments must not impact the rest of the lines or have any impact on the resulting Yarn program.
Comments may occur in any line of a Yarn file and take precedence over any other parsing rules such as hashtags, but may still be escaped.

Identifiers

Identifiers are mentioned at various points in this document, and the rules for these are shared across all stages of the Yarn project.

An identifier is built up of two main parts:

	the identifier head which is any of the following symbols: an upper or lowercase letter A to Z, an underscore (_), a non-combining alphanumeric Unicode character in the Basic Multilingual Plane, or a character outside the Basic Multilingual Plane that isn’t in the Private Use Area.

	(after the identifier head) any number of identifier characters are allowed, which may be any of the identifier head symbols, as well as digits, the period (.), and combining Unicode characters.

The $ symbol must not be part of an identifier.
The minimum length of an identifier is 1 character (the identifier head with no further identifier characters), but the maximum length of an identifier is unspecified.

[image: ../_images/IDENTIFIER.svg]
[image: ../_images/IDENTIFIER_HEAD.svg]The first allowed symbol in the identifier
[image: ../_images/IDENTIFIER_CHARACTER.svg]All subsequent allowed symbols

Yarn Structure

The basic structure of a Yarn file is zero or more file tags and one or more Yarn nodes.

[image: ../_images/yarn_file.svg]

File Tags

File tags are file level metadata that is relevant for all nodes in the file.
A common use for file tags is for versioning the file.
File tags must go at the start of a file before any nodes begin.
File tags must have the # symbol at the start of them and then contain all text up until the end of the line.

[image: ../_images/file_tag.svg]

Nodes

A node is the single story element of a Yarn file.
Nodes are the story structural building blocks of Yarn; they are designed to contain pieces of a story and then have these story pieces linked together.
This is not a requirement–everything could be done in a single node–but avoidance of the node structure quickly becomes unwieldy for the author.
A node must be comprised of a single header and a single body in that order.

[image: ../_images/node.svg]

Headers

A header is comprised of one or more header tags.
The header is finished when encountering a line that only contains the header delimiter ---.
After encountering the header delimiter the body of the node is entered.

[image: ../_images/header.svg]

Header Tags

A header tag is a line broken up into three components, in order; the tag name, the separator, and the tag text.
The tag name is an identifier.
The tag separator is the character :.
The tag text is all text up until the end of line.
Header tags are commonly used as node specific metadata but using them in this manner is not required, beyond the title tag.

The maximum amount of whitespace allowed between the tag separator and the tag text is unspecified. The minimum amount is zero characters.
An example of a header tag is the title tag: title: start.

Every node must have a title tag.
Required or banned header tags beyond title are unspecified.
The order of header tags is unspecified.

[image: ../_images/header_tag.svg]

Title Tag

The title tag is a specific header tag that uniquely identifies the node.
The tag name for the title tag must be title.
The tag text for the title tag must be unique within the file.
It is an error for a title text to be repeated within a file.
The tag text for the title tag should be unique within the project.
The tag text must follow the rules of identifiers.

The behaviour of the program when a title tag’s text is not unique across the project is unspecified.
The program should flag this as an error.

[image: ../_images/title_tag.svg]

Duplicate Tags

Duplicate header tags within a node is invalid.
A duplicate tag is a duplicate if it has the same tag name as another.
The implementing program must either throw an error when encountering a duplicate tag or ignore all but the first instance of a tag.
If the implementing program is ignoring later duplicates, the user should still be informed of the existence of duplicate tags.

Body

A body is the part of the node that contains the story and all flow that impacts the story, and is comprised of multiple statements.
A statement is a line that is one of the following:

	dialogue

	commands

	options

A statement may have optional hashtags.
A body must have at least one statement.

[image: ../_images/body.svg]
[image: ../_images/statement.svg]

The body ends when encountering a line that consists entirely of the body delimiter ===.
The body delimiter ends both the current node and the body of that node.
The end of file must not be used in place of a body delimiter.

Hashtags

Hashtags are metadata associated with the statement they are a part of.
Hashtags must go at the end of the statement.
The other components of the statement must end at the hashtag, the hashtag operates effectively as the newline terminator for the statement.

A hashtag starts with the # symbol and contain any text up to the newline, a whitespace character, or another hashtag.
#lineID:a10be2 is an example of a hashtag.

Multiple hashtags can exist on a single line.
#lineID:a10be2 #return is an example of multiple hashtags on a line.
General Kenobi: Why hello there #lineID:a10be2 #return is an example of a line of dialogue with multiple hashtags.

[image: ../_images/hashtag.svg]

Dialogue Statement

A dialogue statement is a statement that represents a single line of text in the Yarn body.
In most cases dialogue will be the bulk of a node’s body.
Dialogue statements can be interpolated dialogue or raw dialogue.
A dialogue statement can contain any characters except for the # character.

{$name}, you are a bold one. is an example of an interpolated dialogue statement.
General Kenobi, you are a bold one. is an example of a raw dialogue statement.

Interpolated Dialogue

An interpolated dialogue is dialogue where there are expressions in the line.
Expressions are encapsulated within the { and } symbols and it is the presence of these symbols that determine if a line is an interpolated one or not.
The expression inside the {} symbols must be a valid expression.
The result of the expression must be coerced into a string value to be inserted into the dialogue.

Other than replacing expressions, dialogue statements must not be modified by the implementing program, and provided to the game as written.
The encapsulated expression can go anywhere inside the statement, or even be the entire dialogue statement.

Raw Dialogue

A raw dialogue is a dialogue statement where there are no expressions.

Escaping Text

There are going to be times in dialogue that the writer will need to use symbols that are reserved.
To use reserved symbols in dialogue preface any reserved symbol with the escape symbol \, this allows the following symbol to escape being understood as a reserved character.
Any character following the escape must be presented in the dialogue as-is and must not be parsed as a special character.
As an example \{$name\}, you are a bold one. would be presented as {$name}, you are a bold one. to the game.

Escaping text must be supported in both normal and interpolated dialogue lines as well as in the dialogue component of options.

Statement Ambiguity

Because the dialogue statement allows a great deal of flexibility in allowed characters every other statement inside the body could be considered to also be a valid dialogue statement.
This creates an ambiguity when parsing a Yarn file, as such the dialogue statement must be considered the lowest priority by the implementing program.

For example <<Fred Move Left>> could be read as a command or a dialogue statement, it must be considered a command by the implementing program.
This does create a potential conflict between writer intent and Yarn’s requirements, but this is unavoidable.
To continue the earlier example: if the writer intended <<Fred Move Left>> to be a dialogue statement, they would have to escape the reserved characters first, so \<<Fred Move Left\>> which would present as <<Fred Move Left>> to the game.

Commands

Commands are special statements that have no specific output to be shown but are used for passing messages and directions to other parts of the program and to control the flow of the story.

The possible types of commands are:

	generic commands

	jump

	stop

	set

	declare

	flow control

All commands must start with the << symbol and end with the >> symbol.
Additional required commands are unspecified.

Generic Commands

Generic Commands are commands for sending messages from the Yarn to the rest of the program.
Unlike the other commands, generic commands don’t impact the dialogue.
They can be thought of as lines of dialogue that aren’t to be shown in the game.
Implementing programs must not modify the flow of the Yarn script based on the command.

Generic commands can have any text except for the #, {, or } symbols inside of them.

Generic commands can also have expressions inside of them, however as with dialogue these must be encapsulated by using the { and } symbols.
Any expressions inside of a generic command without being encapsulated must be ignored and treated instead as regular text.

<<Fred Move Left 2>>
<<Unlock Achievement MetSteve>>
<<Log {$playerName} Died>>

are examples of generic commands.

[image: ../_images/generic_command.svg]

Jump

The jump command is how a Yarn program can move from one node to another.
The jump has two components: the keyword and the destination and these are separated by one or more whitespace characters.
The keyword is the text jump and comes first in the command.

The destination is the name of the node to move to.
The destination may be any text but must map to the title of a node in the project.
The destination text may be created using the result of an expression, however this must be wrapped inside { } symbols.
The expression must resolve to a string value and must be a string that matches a node title in the project.

The behaviour of an implementing program is unspecified when asked to jump to a destination that doesn’t match a title in the project.
The implementing program should flag this as an error.

Once the jump command has been completed the current node must be exited immediately. This means any dialogue, options, or commands below the jump are to be ignored.
From that point on, the destination node’s contents must instead be run.

<<jump nodeName>> is an example of a jump command, <<jump {$chosenEnding}>> is an example of a jump command using an expression to determine the destination node.

[image: ../_images/jump.svg]

Stop

The stop command is for halting all progress on the project.
Once the stop command is reached all processing on the project must halt, no additional nodes are to be loaded and run, no additional dialogue or commands are to processed.
The stop command has only one component, the keyword stop.
The stop command should reset any variable or internal state back to their initial states as if the script had not been run.

<<stop>> is the example of the stop command.

[image: ../_images/stop.svg]

Set

The set command allows variables to be given values.
The set command has four components: the keyword, the variable, the operator and the value, and these must be presented in that order.
Each component must be separated by one or more whitespace characters.

The keyword is the text set.
The variable is the name of the variable which is to have its value changed.
The operator must be the text to or =.
The value is any expression, unlike other uses of expressions this one must not be wrapped inside the { and } symbols.

The following is an example of two set commands:

<<set $name to "General Kenobi">>
<<set $boldness to $boldness + 1>>

Components in the set command must follow the rules for variable naming and expressions.
The set command must not allow setting a variable to an expression whose value is different from the type of that variable.

[image: ../_images/set.svg]

Declare

Declare is a command that works on variable to provide guidance as to the usage of the variable, both for the writer and the implementing program.
Yarn is a statically typed language so every variable has a type associated with it which determines what type of values it is allowed to hold.
This means variables need have this determined before they can be used, the declare command is one means of doing this.

The declare command has four components: the keyword, the variable, the operator and the value, and must be presented in that order.
Each component must be separated by one or more whitespace characters.

The keyword is the text declare.
The variable is the name of the variable which is to have its type declared.
The operator must be the text = or to.
The value is any expression, unlike other uses of expressions this one must not be wrapped inside the { and } symbols.

The resulting value of the expression is used determine what type the value has been declared as, so for example if the expression results in a boolean value then the variable is declared as a boolean.

The following is an example of two declaration commands:

<<declare $name = "General Kenobi">>
<<declare $boldness = 1>>

In these examples we have declared two new variables $name and $boldness.
The value of the expression is used determine what type the value is to be declared as, so in the above examples $name is typed as a string because the expression value of "General Kenobi" is a string.

The implementing program must not allow the variable declared to ever have a value set which is not of the declared type.
If this does occur the implementing program must flag this as an error.

A variable may only be declared once in a program, duplicate declarations are not allowed.
A duplicate declaration is where the variable component of the declaration is idential to another declarations.
The implementing program must flag any duplicate variable declarations as an error.
This is true even if the declaration is identical or not in conflict with the use of the variable.

[image: ../_images/declare.svg]

Explicit Typing

It is assumed that most of the time a variable’s type will be determined implicitly via the initial expression, however the type can also be explicitly set.
Syntactically this works identically to the implicit type declaration with two additional elements at the end of the command, the as keyword and a type.
The type of the expression must match one of the supported types keywords:

	String for Strings

	Number for Numbers

	Bool for Booleans

<<declare $name = "General Kenobi" as String>> is an example of an explicitly typed declaration.
Explicitly typed declarations will most likely be used when getting initial values from functions whose type is undefined.
The type of the default value given in an explicitly typed declaration must match the stated type, for example <<declare $name = "General Kenobi" as Number>> is an invalid declaration because "General Kenobi" isn’t a Number.

If additional types are in use by the implementing program, the keywords for their explicit definition are unspecified, but they must be consistent across all declarations.

Flow control

Flow control is a collection of commands that allow the writer to control the flow of the story.
The purpose of these commands is to limit and select which pieces of a story are presented.
Flow control in combination with options and jumps are what make Yarn a non-linear narrative language.
There are four commands which work in conjunction to support flow control.
These are ordered, and the order of these commands must be followed:

	if

	elseif

	else

	endif

The if and endif must be present, the elseif and else must be optional.
While each of these commands are their own statement, they should be considered to be part of a larger flow control statement which spans multiple lines.
Each of these, except the endif, have an attached block.

The following is an example of flow control:

<<if $var == 1>>
 if-scope
<<elseif $var == 2>>
 elseif-scope
<<else>>
 else-scope
<<endif>>

The dialogue line shown will depend on the value of $var.
If $var is 1, the line if-scope will be presented, if it is 2 then the elseif-scope line will be shown.
If neither of those are the case then the else-scope line will be shown.

[image: ../_images/flow_control.svg]

if

The if command is the opening command of flow control and is broken up into two parts, the keyword and the expression, that must be in that order.
The keyword is the text if.
The expression is an expression.
The expression must resolve to a boolean.

<<if $boldness > 1>> is an example of an if command, <<if 1>> is an example of an invalid if, it is invalid because the expression does not resolve to a boolean.

[image: ../_images/if.svg]

elseif

The elseif command is an optional component of flow control and allows for additional flow to be expressed.
The command works in a fashion very similar to the if command.
The command is broken up into two parts, the keyword and the expression and must be presented in that order.
The keyword is the text elseif.
The expression is an expression.
The expression must resolve to a boolean value.

The elseif will run only if the if component and any other elseifs before it evaluated to false, and if its own expression evaluates to true.

Each flow control can have zero or more elseif commands.
The maximum number of allowed elseifs as a part of flow control is unspecified but must be greater than zero.
An elseif command must not exist without an if command and must go after the if command.

[image: ../_images/elseif.svg]

else

The else command is an optional component of flow control and allows for additional flow to be expressed.
The command only has a single component, the keyword else.

There must only be a single else command (if any) per flow control.
The else command must go after the if and any elseif commands.
The else must not exist without an if command.

The else’s block will run only if the if and any elseif components all evaluated to false.

The example of the else command is <<else>>.

[image: ../_images/else.svg]

endif

The endif command is the final element of flow control and is comprised solely of the keyword endif.
The endif must be present whenever there is flow control and must go after the if and any elseif or else commands.
The endif exists to allow the implementing program know when the scope of the other elements in the flow control has ended.
<<endif>> is the example of the endif command.

[image: ../_images/endif.svg]

Scope and Blocks

For flow control to be useful there needs to be Yarn statements which are run only when their appropriate expression evaluates to true.
Flow control allows for blocks of statements to be scoped to their commands.
A block is a collection of statements that are scoped to a particular part of the flow control.
The block must be one or more statements.
These can be any statements allowed inside a node’s body, including additional flow control statements.

The scope of a block is determined by the flow control commands and associates each block with a command.
The if, elseif, and else commands all have a block associated with them.
The block of statements for a command start from the first statement after the command up until the next command in the flow control.
When dealing with nested flow control the deepest set of flow control commands are to be the ones that can first assume another command closes their scope.

While it is common for writers to indent their blocks relative to their scope it must not be used by the implementing program to determine scope.

Handling

The implementing program must process all statements within the active block’s scope.
The active block is the block of Yarn who’s command expression evaluates to true.
The block associated with the else command, if present, must only be determined as the active block if all other blocks’ expressions evaluate to false.

An implementing program must not process any statements inside a block that is not the active block.
An implementing program must only have, at most, one active block.
If no block’s expression evaluates to true then no block must be processed.

Ambiguity

Because the flow control commands allow for potentially multiple commands and their blocks to be true simultaneously, the implementing program must select them in a top down approach wherever there is ambiguity.
For example take the following flow control:

<<if false>>
 if-scope
<<elseif true>>
 elseif-1-scope
<<elseif true>>
 elseif-2-scope
<<else>>
 else-scope
<<endif>>

Both of the elseif commands’ expressions evaluate to true, so either one’s attached block could be run and seen to be correct.
However because one is above the other the block with elseif-1-scope dialogue inside would be the selected one.
If multiple commands evaluate the result of the same variable or expression, the implementing program should attempt to identify this and alert the writer.

Command Ambiguity

Generic commands support all the same characters as the other commands and this creates an ambiguity between commands, with each more specialised command also being a valid generic command.
To resolve this ambiguity all other commands take priority over the generic command.
As an example <<jump start>> is a valid generic command but also a valid jump command, it must be assumed to be a jump command.

This gets more complex in that <<set up>> is not a a valid set command but is a valid generic command.
Supporting overloading of commands in this manner is invalid and must not be allowed by the implementing program.
If a command begins with the keyword of another command the implementing program must assume the statement to be one of that command regardless of the validity of the rest of the command.
In the above <<set up>> example the implementing program must consider this is a malformed set and not a generic command.

Options

Options are the means by which Yarn can present dialogue choices to the game and much as with flow control are an element that spans multiple lines.
Options are comprised of one or more option lines.
An option line represents a single choice in an option, and are comprised of three parts: the keyword, the dialogue, and an optional conditional, in that order.

[image: ../_images/option.svg]

The keyword is how the implementing program can tell a line is part of an option instead of dialogue and is the symbol ->.
The dialogue is a normal line of dialogue following all rules associated with that.
The maximum amount of whitespace allowed between the keyword and the dialogue is unspecified. The minimum amount is zero characters.

As the intention of options is to provide choice to the player, when options are encountered the implementing program must halt further progress through the node until an option has been selected.
Each option must be provided in the order they are written in the node.
The mechanism by which an option line is chosen is unspecified.
Only a single option line must be chosen.

[image: ../_images/options.svg]

Conditional

The conditional is a command that provides additional information about how to treat, or whether to present, particular option lines.
The conditional’s syntax is identical to the if command and follows all rules there, but as it is not part of flow control must not have an accompanying endif or attached block.

The conditional must be an optional component of the line.
As the conditional is optional any option line without a conditional must be assumed to be true.

The implementing program must process the results of the conditional expression and provide the resulting boolean value to the other parts of the game that makes the selection.
The implementing program must not restrict the selection of invalid options.
It is the responsibility of the other components of the game to control how invalid options are to be handled.

Blocks

Much like with flow control options may have blocks of statements which are triggered–should that option line be chosen–each option line may optionally have a block of statements associated with that option line.
Similar again to the flow control; if an option line is selected, its associated block must be processed by the implementing program.
If an option isn’t chosen, the associated block must not be processed.

Unlike the flow control, however, there is no clear way to tell apart different blocks and options from other parts of the Yarn, instead indentation is used to determine blocks and the end of a set of options.
The rules for this must be followed:

The first option line in the options determines the base indentation for the options statement, this is determined by counting the number of whitespace elements before the -> symbol.
Any statements following the option line at a greater level of indentation counts as part of the block for that option line.
Any other options lines with the same indentation is considered a new option line and closes the block for the preceeding option.

These rules are repeated for each option line until a non-option line with the same, or less indentation than the base indentation is encountered, which closes the block and the option statement entirely.

Options can be nested inside option blocks.
Not every option line needs to have a block.
The maximum number of supported indentation of options inside a block is unspecified.

[image: ../_images/option_block.svg]

Tabs vs Space

The choice to require either tabs or spaces over the other is unspecified.
Tabs and spaces shouldn’t be mixed.
Should there be a need to convert between them the conversion rate must be the same at all points in the project.
The rate of conversion between tabs to spaces, and spaces to tabs, is unspecified.
If there is a need to choose one, tabs should be preferred due to their improved accessibility over spaces.

Examples

Basic dialogue options:

-> Hi
-> Hi {$name}

The above is an example of an option with two choices for the player to make.
The first is a line of raw dialogue, the second is a line of interpolated dialogue.

Options with conditionals:

-> Hi
-> Hi Fred <<if 5 > 3>>

The above is an example of an option with two choices for the player to make.
Both have regular lines of dialogue.
The second has a conditional component, the validity of the second option line will be true.

Options with blocks:

-> Hi
 So, are we doing this?
 Yes, lets.
-> Hi Fred
 What's the plan?
 We're doing it.
Alright!

The above is an example of an option with two choices, and another line of dialogue after the option.
Both are a regular lines of dialogue and both have an attached block.
If the first option was selected then the lines to be presented would be as follows:

So, are we doing this?
Yes, lets.
Alright!

Options with nested options:

-> Hi Fred
 What's the plan?
 We're doing it.
 -> Alright!
 Yep
 -> Ok.
-> Hi

The above is an example of an option with nested options in its block.
The Alright and Ok option lines are inside the Hi Fred option line’s block.
The Yep line would only ever be presented if the Hi Fred option was selected and then the Alright option was selected after that.

Putting it all together:

-> Hi
-> Hi Fred <<if 5 > 3>>
 what's the plan?
 We're doing it.
 -> Alright!
 Yep
 -> Ok
-> Hello {$name} <<if $formality > 2 >>
-> Hi {$name}

The above is an example of an option with multiple option lines, conditionals, interpolated dialogue, nested options, and blocks.

Expressions

Expressions are mathematical chains of values, variables, functions, expressions, and operators that produce a single value as output.

Expressions are not a statement but are a component of various statements and must only be used as part of a statement, they cannot exist in isolation.
This means if you do want to show the result of an expression it will have to be wrapped inside an interpolated dialogue statement.
For example, a line that is just $numberOfCoins + 1, while a valid line of dialogue, is not going to give the result of the expression, but {$numberOfCoins + 1} will present the result as a line of dialogue.

Expressions are mostly used to control the flow of the if statement, although they are also used as part of set and declare statements, and in interpolated dialogue.

[image: ../_images/expression.svg]

Values

A Value is a single concrete form of one of the supported types.
All expressions, subexpressions, variables and functions, must resolve to a value before they can be used.
Examples of values include 1, true, "General Kenobi".

Supported Types

Yarn supports the following types and these must be supported by an implementing program:

	Number

	String

	Boolean

Numbers

There are two types of numbers, positive and negative.
Positive Numbers are broken up into three components: the integer part, the decimal separator, and the fractional part.

The integer part consists of one or more characters 0 - 9.
The decimal separator is optional and consists solely of the . symbol.
The fractional part is optional and consists of one or more characters 0 - 9.

The decimal separator must not exists without a fractional part also existing.
The decimal separator and fractional part must not exist without an integer part.
There must be no whitespace between any of the three parts of the number.

Negative numbers follow all the same rules as positive numbers but begin with the negation indicator symbol -.
The negation indicator must go hard up against the integer part, there must not be whitespace between them.

The precision, storage, and form of the number internally by the implementing program is unspecified, however it must support decimals.
As an example of this in C# the Decimal, Complex, and float formats are valid (though some make more sense than others) but int is not.
If a number is beyond the precision supported by the implementing program, the program must report this as an error.

Examples

The following are examples of valid numbers in Yarn:

1
0.5
-1
3.14159
-1.414

The following are examples of invalid numbers in Yarn:

.5 // no integer part to the number
1. // a decimal separator but no fractional part
- 1 // space between the negation indicator and the integer part
1. 414 // space between the decimal separator and the fractional part

Strings

Strings are an ordered collection of characters and must be capable of holding UTF-8 characters [https://en.wikipedia.org/wiki/UTF-8], as this is what the Yarn language is written in, but the internals of this is unspecified–provided all valid UTF-8 strings are supported.
The minimum and maximum lengths of strings are unspecified but if the implementing program cannot support a string it must present this as an error.
Strings in expressions must be encapsulated between " and " symbols.

Booleans

Booleans must be capable of representing the boolean logic values of true and false, however the specific implementation is undefined.
Booleans must not be exposed to expressions as 1 and 0–or similar intermediate representations–even if they are represented this way internally by the implementing program.
Booleans in expressions must be written as true for true and false for false.

String Coercion

When used as part of interpolated dialogue the value must be coerced into a string before they can be shown as a piece of the dialogue.

Strings do not require coercion and must be injected into the dialogue as is.
The only requirement for strings being added into dialogue is that it must not include the encapsulating " symbols.

The process for coercising numbers and booleans into a string is unspecified.
The only requirement is each value being coerced must appear the same every time it is presented regardless of the expression that creates the value.

Additional Types

Additional types supported by an implementing program should not be used.

Variables

Variables are a means of associating a value with a name so that it can be more easily used and changed in multiple places.
Variables must only be used inside of expressions.
A variable encountered outside of an expression must not be considered by the implementing program to be a variable.

Naming and scope

All variables are a variant on identifiers.
Variables are an identifier that start with a $ symbol and otherwise follow all other identifier rules.
The maximum length of a variable name is unspecified, but the minimum is one character after the $ symbol.

Variable names must be unique throughout their scope.
The scope of the variable is what defines for how long a variable exists.
Once a variable leaves its scope it is no longer valid and implementing programs must not support accessing variables outside of their scope.
The scope of a variable must be global across the project.

$name is an example of a variable name, $𐃩 is another example of a variable name.

Static Types

Yarn is a statically typed language, in the context of Yarn this means variables have a type which represents which of the supported type’s values it can hold.
Implementing programs have two means at their disposal to determine a variables type, inference and declaration.

Declaration is an explicit action by the writer and is the result of the declare command.
Inference is when the implementing program observes the use of a variable and infers its type based on this.
The majority of the time it is expected that inference will be the preferred means of determining the type of a variable.
Declaration takes precedence over inference, even in cases where the inference correctly determines the variable type and the declaration is in conflict with this.
Declaration is allowed even if it is only formalising the same result the inference would provide.

Once a variable has its type determined–whether by explicit declaration or inference–it cannot change.
The implementing program must not allow variables to hold values of a type different from what the type specified or the value provided when the variable type was determined.

Due to some elements being outside of the control of Yarn–notably functions–it is also possible for this requirement to be breached due to no fault of the implementing program or the Yarn as written by the author.
For example, a variable may be assigned the return value of a function whose specifics are not known to Yarn–causing an issue that may not be identified until runtime.

No matter the cause, if a variable is assigned a value that does not match its associated type, the implementing program must generate an error.

Operations

Operations are mathematical functions that take operands and an operator and result in a new value.
Operations can have one or two operands depending on the specific operation.
Operators are the symbol used to define which operation is being called.
Operands are the elements that used in the operation.
Operands must be a value, a variable, an expression, or a function.
Most operations are binary operations and have two operands, these go either side of the operator, and are called the l-value and r-value for the left and right side respectively.

The following binary operations and their operator must be supported.
Some of these have multiple operators, these must work identically and exist for people who prefer to use words instead of symbols:

	addition: +

	subtraction: -

	multiplication: *

	division: /

	truncating remainder division (modulo): %

	equality: == or is

	inequality: !=

	greater-than: >

	less-than: <

	greater-than-or-equal: >=

	less-than-or-equal: <=

	boolean OR: || or or

	boolean AND: && or and

	boolean XOR: ^ or xor

The amount of whitespace between operands and operators in binary operations is unspecified.

There are two unary operations, that is operations that have only a single operand.
The operator always goes to the left side of the operand and there must be no whitespace between the operator and operand.
The unary operations are:

	minus: -

	boolean NOT: !

Parentheses are used to bundle up some elements of an expression into a subexpression.
Parentheses start with the open parenthesis symbol (and can have any expression inside of them before being closed with the closing parenthesis symbol).
Parenthetical subexpressions must be evaluated to a single value before being treated as a single operand in the enclosing expression.
For example, in the expression 2 * (3 + $coins), the 3 + $coins component must be resolved into a value before being able to be multiplied by two.

The + operator, when operating on strings, represents concatenation: the merging of two strings by appending the r-value string to the end of the l-value string.
When operating on numbers the + operator is the normal addition operator.
All other operators act according to their existing arithmetic or logical operations.

Supported types in operations

The following table shows the compatible types for each binary operation and must be supported:

	+	-	*	/	%	==	!=	>	<	>=	<=				&&	^
———-	—	—	—	—	—	—-	—-	—-	—-	—–	—–	——	—-	—		
numbers	✅	✅	✅	✅	✅	✅	✅	✅	✅	✅	✅	✅	✅	❌		
strings	✅	❌	❌	❌	❌	✅	✅	❌	❌	❌	❌	❌	❌	❌		
booleans	❌	❌	❌	❌	❌	✅	✅	❌	❌	❌	❌	✅	✅	✅		

The following table shows the compatible types for each unary operation and must be supported:

	!	-
———-	—	—
numbers	❌	✅
strings	❌	❌
booleans	✅	❌

Operations between different or incompatible types is unspecified but should not be supported, due to the potential for confusion.
If they are supported (against recommendation), existing behaviour around transitivity, commutativity, and symmetry of operations should be respected.
For example if "hello" < 5 is true then 5 > "hello" should also be true and "hello" >= 5 should be false.
Likewise ("hello" + 2) < 5 resulted in true then (2 + "hello") < 5 should also be true.
This taken to the extreme should mean that 1 + "hello" == "hello + 1 should evaluate to true. This is confusing, hence the recommendation against supporting operations between disparate types.

Operation Output

The following table shows the expected output type of each operation based on its operand type:

	+	-	*	/	%	==	!=	>	<	>=	<=				&&	!	unary minus	^
———	——–	——–	——–	——–	——–	———	———	———	———	———	———	———	———	———	————-	———		
number	number	number	number	number	number	boolean	boolean	boolean	boolean	boolean	boolean	boolean	boolean		number			
string	string					boolean	boolean											
boolean						boolean	boolean					boolean	boolean	boolean		boolean		

Order of Operations

The order of operations is as follows:

	parentheses (())

	boolean NOT (!), unary minus (-)

	multiplication (*), division (/), truncating remainder division (%)

	subtraction (-), addition (+)

	equality (== or is), inequality (!=), less-than (<), greater-than (>), less-than-or-equal (<=), greater-than-or-equal (>=)

	boolean OR (|| or or), boolean AND (&& or and), boolean XOR (^ or xor)

If there are any equal priority operations in an expression they are resolved left to right as encountered in the expression.

Functions

Functions are an alternate way of getting values into expressions.
Functions are intended to be used to allow more complex code to be bundled and called in a different environment, such as in the game itself.
Functions must return a value.

[image: ../_images/function.svg]

Structure

Functions are comprised of a name, parentheses, and parameters.

The function name is an identifier.
Thus, the minimum length is one character and the maximum length of a function name is unspecified.

The parentheses go after the function name and there must be no whitespace between the opening parenthesis (and the function name.
The closing parethesis) finishes the function.

Parameters go in between the opening (and closing) parentheses.
Parameters must be expressions, functions, values, or variables.
Functions can have multiple parameters, these must be separated by the comma , symbol.

Whitespace between parameters and the separator is undefined, but newline characters must not be allowed.
The minimum number of allowed parameters a function can have is zero (empty parentheses), and the maximum is undefined.

Examples of functions include the following;

getPlayerName()
DetermineCurrentRoom($playerName, $target, 2)
rad2Deg(1.5707963268)

Handling

The handling of functions by the implementing program is unspecified, however the output type of a function must always return the same type of value between calls at runtime.
Yarn functions are assumed to be non-blocking and effectively instantly returning, the implementing program should adhere to this.
If given the same input parameters, multiple invocations of the same functions should return the same value each time.

The implementing program should allow external parts of the game to provide the return value of the function.
The implementing program must pass function parameters to these delegate systems in the same order as they are presented in the Yarn at the function call site.
However, Yarn makes no promises as to the order in which, or number of times an implementing program may call functions; the results of function calls may be cached or called ahead of time.

In general, and while not a specific requirement, implementing programs and writers should err on the side of treating functions in Yarn as if they are pure functions [https://en.wikipedia.org/wiki/Pure_function].

 uid: Yarn.Compiler.Upgrader summary: *content

uid: Yarn.Compiler.Upgrader
summary: *content

Contains classes for upgrading Yarn scripts from earlier versions.

 uid: Yarn.Compiler summary: *content

uid: Yarn.Compiler
summary: *content

Contains classes for compiling Yarn script into programs.

 uid: Yarn.Markup summary: *content

uid: Yarn.Markup
summary: *content

Contains types for working with parsed markup in Yarn lines.

 uid: Yarn.Unity summary: *content

uid: Yarn.Unity
summary: *content

Contains classes for using compiled Yarn programs in the Unity game engine.

 uid: Yarn summary: *content

uid: Yarn
summary: *content

Contains classes for working with compiled Yarn programs.

 <no title>

 MIT License

Copyright (c) 2022 Peter Appleby, Secret Lab Pty Ltd, and Yarn Spinner Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION O